

ELIZADE UNIVERSITY ILARA MOKIN, ONDO STATE

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SECOND SEMESTER EXAMINATION, 2018/2019 ACADEMIC SESSION

COURSE TITLE: ELECTROMAGNETIC WAVES

COURSE CODE: EEE 314

EXAMINATION DATE: 12TH JULY, 2019

COURSE LECTURER: PROF. SOLOMON ADENIRAN

HOD's Signature

TIME ALLOWED: 2 HOURS 40MINUTES

INSTRUCTION

- 1. ANSWER ANY FIVE QUESTIONS
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE NOT ALLOWED TO BORROW ANY WRITING MATERIALS AND CALCULATORS DURING THE EXAMINATION.
- 4. SMART WATCHES ARE NOT ALLOWED IN THE EXAMINATION HALL

- 1 (a) State Maxwell equations.
 - (b) What amendment did Maxwell do to Ampere's circuital law?
 - (c) What is the Maxwell's equation for a material media?
- 2 (a) Define Poynting vector, explaining things that will make it clear to a first timer.
 - (b) Given $E_x = 11e^{-j(15\pi z-90t)}$, what is H_y assuming there are no other components of the wave? Obtain the following:
 - (i) velocity of propagation,
 - (ii) propagation constant, and
 - (iii) the Poynting vector.
- 3 (c) Derive the Three Maxwell's equations from the two Gauss equations and the Faraday's law of induction.
 - (b) A magnetic wave component in y direction is given as $H_y = 16\cos(k_1x) e^{j\omega t \gamma y}$, compute the components E_x , E_z , E_y , H_x , and H_Z
- 4 (a) A ray of electric field is incident on the boundary between two dielectrics. The ray enters the boundary at an angle of 30° to the vertical through the first dielectric with constant $3\epsilon_0$ and emerges inside the second dielectric of $17\epsilon_0$. Compute the angle at which the ray emerges in the second dielectric.
 - (b) Assume the ray is magnetic in nature and no charge flows over the boundary, compute the angle by which the ray emerges in the second dielectric.
- 5 (a) Derive the two wave equations for an empty space.
 - (b) Assume a plane wave in an open region, solve the equation $\nabla^2 \vec{E} \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} = 0$ for the electric field.
- 6 (a) Calculate the charge density giving rise to the following electric field densities:

(i)
$$\vec{D} = 6y\hat{y}$$
 (ii) $\vec{D} = 201x\hat{x}$ and (iii) $\vec{D} = 29\hat{y} + 101z\hat{z}$

- (b) $\nabla X \vec{H} = \vec{J}_{cond} + \vec{J}_{conv} + \frac{\partial \vec{D}}{\partial t}$. Define all the symbols and explain the equation.
- (c) Derive the Maxwell's fifth equation or continuity equation ∇ . $J = -\frac{\partial \rho}{\partial t}$.
- 7 (a) Discuss the reason(s) why a man standing in a clear water sees his feet in the water as shortened and bent.
 - (b) Derive the boundary conditions at the interface between a dielectric and a conductor for a magnetic field. Assume there is no current sheet at the interface.